Control, Planning, Learning, and Imitation
with Dynamic Movement Primitives

Stefan SCHAALY2, Jan PETERS"2, Jun NAKANISHI?, and Auke
IJSPEERT 23

Computational Learning and Motor Control Laboratory*

Computer Science and Neuroscience, University of Southern California, Los
Angeles, CA 90089-2520, USA

Department of Humanoid Robotics and Computational Neuroscience?
ATR Computational Neuroscience Laboratory, 2-2-2 Hikaridai, Seika-cho,
Soraku-gun, 619-0288 Kyoto, JAPAN

School of Computer and Communication Sciences
EPFL, Swiss Federal Institute of Technology Lausanne, CH 1015 Lausanne,
SWITZERLAND

3

Abstract. In both human and humanoid movement science, the topic of move-
ment primitives has become central in understanding the generation of complex
motion with high degree-of-freedom bodies. A theory of control, planning, learning,
and imitation with movement primitives seems to be crucial in order to reduce the
search space during motor learning and achieve a large level of autonomy and flex-
ibility in dynamically changing environments. Movement recognition based on the
same representations as used for movement generation, i.e., movement primitives,
is equally intimately tied into these research questions. This paper discusses a com-
prehensive framework for motor control with movement primitives using a recently
developed theory of dynamic movement primitives (DMP). DMPs are a formu-
lation of movement primitives with autonomous nonlinear differential equations,
whose time evolution creates smooth kinematic movement plans. Model-based con-
trol theory is used to convert such movement plans into motor commands. By means
of coupling terms, on-line modifications can be incorporated into the time evolution
of the differential equations, thus providing a rather flexible and reactive framework
for motor planning and execution — indeed, DMPs form complete kinematic con-
trol policies, not just a particular desired trajectory. The linear parameterization of
DMPs lends itself naturally to supervised learning from demonstrations. Moreover,
the temporal, scale, and translation invariance of the differential equations with
respect to these parameters provides a useful means for movement recognition. A
novel reinforcement learning technique based on natural stochastic policy gradients
allows a general approach of improving DMPs by trial and error learning with re-
spect to almost arbitrary optimization criteria, including situations with delayed
rewards. We demonstrate the different ingredients of the DMP approach in various
examples, involving skill learning from demonstration on the humanoid robot DB
and an application of learning simulated biped walking from a demonstrated tra-
jectory, including self-improvement of the movement patterns in the spirit of energy
efficiency through resonance tuning.

2 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

1 Introduction

With the advent of anthropomorphic and humanoid robots [1], a large num-
ber of new challenges have been posed to the field of robotics and intelli-
gent systems. Lightweight, highly complex, high degree-of-freedom (DOF)
bodies defy accurate analytical modeling such that movement execution re-
quires novel methods of nonlinear control based on learned feedforward con-
trollers[2]. This issue is even amplified since, due to frequent contacts with
an unknown environment, high gain control is not a viable alternative to
model-based control. Movement planning in high dimensional motor systems
offers another challenge. While efficient planning in typical low dimensional
industrial robots, usually characterized by three to six DOFs, is already a
complex issue[3,4], optimal planning in 30 to 50 DOF systems with uncertain
geometric and dynamic models is quite daunting, particularly in the light of
the required real-time performance in a reactive robotic system. For exam-
ple, the field of reinforcement learning[5], one of the most general planning
frameworks, has hardly progressed beyond four to six dimensional problems
in continuous state and action problems. As one more point, advanced sens-
ing, using vision, tactile sensors, acoustic sensors, and potentially many other
sources like olfaction, distributed sensor networks, nanosensors, etc., play a
crucial role in advanced robotics. Besides finding reliable methods of pro-
cessing in such sensor rich environments[6], incorporating the resulting in-
formation into the motor and planning loops increases the above mentioned
complexity of planning and control even more.

Fig. 1. Humanoid robot DB

From this brief outline of some of the basic problems of advanced robotics,
it is apparent that robotics researchers face increasingly more the full com-
plexity of information processing that biology solves so seeming effortlessly on

Dynamic Movement Primitives 3

a daily basis. Thus, increasingly more projects resort to studying human be-
havior and neurobiological phenomena in order to extract relevant principles
for new methods in robotics. Understanding dexterous manipulation skills
[7,8], imitation learning [9-12], human movement recognition [13], human ac-
tive visual perception[14—-16], human locomotion[17], and the composition of
complex actions[18-20] are among the most salient topics.

One of the fundamental questions, recurring in many of the above lines
of research, revolves around identifying movement primitives (a.k.a. units of
actions, basis behaviors, motor schemas, etc.)[9,11,21-25]. The existence of
movement primitives seems, so far, the only possibility how one could conceive
that biological and artificial motor systems can cope with the complexity of
motor control and motor learning[9,26,27]. Developing a theory of control,
planning, learning, and imitation with movement primitives for humans and
humanoids is therefore currently a rather prominent topic in both biological
and robotic sciences.

.

Motor
Output

Motor Command
Generation

\

.

Pid Recurrent Connections
Pie (efference copy)
2 Movement
. o
.1 Primitive 1 3D Information
f Movement of Manipulated
' Primitive 2 Object
L
1 Movement
' \ Primitive 3 ,V
' 4 Spatial .
Movement i
[Information
' & Primitive 4 VIS u a |
L
' Object In pu t
' Recognition
' Movement
' + | Primitive n-2
1 g
_ [N Movement Posture &
Learning L’ \ Primitive n-1 Movement of
Teacher
System Movement
Primitive n
| Motor | | Perceptual |

Fig. 2. Conceptual sketch of motor control and motor learning with movement
primtiives. The right side of the figure contains primarily perceptual elements and
indicates how visual information is transformed into spatial and object informa-
tion, as needed for supervised learning from demonstration. The left side focuses
on motor elements, illustrating how a set of movement primitives competes for a
demonstrated behavior, and finally selects the most appropriate one for execution
and further refinement through trial and error. Motor commands are generated
from input of the most appropriate primitive. Learning can adjust both movement
primitives and the motor command generator.

4 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

Our approach to motor control with movement primitives, sketched in
Figure 2[9], was motivated by the desire to speed up motor learning with
imitation learning. It is also intended to provide a framework for movement
recognition, a principled way of action generation that allows generalization
of a learned movement to related tasks, and to include a means for perception-
action coupling as needed in many interactive perceptuomotor skills. In the
following sections, we will first sketch our idea of Dynamic Movement Prim-
itives, originally introduced in [28-30], illustrate their potential for imitation
learning and general reinforcement learning, and exemplify this framework
in various applications from humanoid robotics with the humanoid robot DB
(Figure 1) and simulation studies.

2 Control Policies

The goal of motor learning can generally be formulated in terms of finding a
task-specific control policy:

u=rm(xta) (1)

that maps the continuous state vector x of a control system and its envi-
ronment, possibly in a time ¢ dependent way, to a continuous control vector
u[31,32]. The parameter vector « denotes the problem specific adjustable
parameters in the policy 7, e.g., the weights in neural network or a generic
statistical function approximator. Given some cost criterion that can evalu-
ate the quality of an action u in a particular state x, dynamic programming,
and especially its modern relative, reinforcement learning, provide a well
founded set of algorithms of how to compute the policy 7 for complex non-
linear control problems. Unfortunately, as already noted in Bellman’s original
work, learning of 7 becomes computationally intractable for even moderately
high dimensional state-action spaces. Although recent developments in rein-
forcement learning increased the range of complexity that can be dealt with
[5,33,34], it still seems that there is a long way to go to apply general policy
learning to complex control problems.

In most robotics applications, the full complexity of learning a control
policy is strongly reduced by providing prior information about the policy.
The most common priors are in terms of a desired trajectory, [x4(t), %4 (t)],
usually handcrafted by the insights of a human expert. For instance, by using
a PD controller, a (explicitly time dependent) control policy can be written
as:

u=m (Xa « (t) 7t) =7 (X7 [Xd(t)v).(d(t)]a t)
Ko (x4(t) = x) + K; (%4(t) — %) 2)
For problems in which the desired trajectory is easily generated and in which

the environment is static or fully predictable, as in many industrial appli-
cations, such a shortcut through the problem of policy generation is highly

Dynamic Movement Primitives 5

successful. However, since policies like in (2) are usually valid only in a local
vicinity of the time course of the desired trajectory, they are not very flexible.
When dealing with a dynamically changing environment in which substantial
and reactive modifications of control commands are required, one needs to
adjust trajectories appropriately, or even generate entirely new trajectories
by generalizing from previously learned knowledge. In certain cases, it is pos-
sible to apply scaling laws in time and space to desired trajectories[35,36], but
those can provide only limited flexibility. Novel approaches developed in com-
puter graphics advocate to combine trajectory pieces recorded from motion
capture to form more complex desired trajectories in a flexible task-specific
way[18]. However, it remains a topic of future work whether these methods
can be applied to the on-line control of complex robots, e.g., potentially em-
ploying methods of dynamics filtering[37] of motion capture data in order to
ensure physical realizability for a particular robot. For the time being, the
“desired trajectory” approach seems to be too restricted for general-purpose
reactive motor control and planning.

From the viewpoint of statistical learning, Equation (1) constitutes a non-
linear function approximation problem. A typical approach to learning com-
plex nonlinear functions is to compose them out of basis functions of reduced
complexity. The same line of thinking generalizes to learning policies: a com-
plicated policy could be learned from the combination of simpler policies, i.e.,
policy primitives or movement primitives, as for instance:

K
uzﬂ(x,a,t):Zwk (x, ag, t) (3)
k=1

Indeed, related ideas have been suggested in various fields of research, for
instance in computational neuroscience as Schema Theory|[21], reinforcement
learning as macro action or options[38], and mobile robotics as behavior-based
or reactive robotics[39]. In particular, the latter approach also emphasized to
remove the explicit time dependency of 7, such that complicated “clock-
ing” and “reset clock” mechanisms can be avoided, and the combination of
policy primitives becomes simplified. Despite the successful application of
policy primitives in the mobile robotics domain, so far, it remains a topic
of ongoing research [19,20,40] how to generate and combine primitives in a
principled and autonomous way, and how such an approach generalizes to
complex movement systems, like human arms and legs.

Thus, a key research topic, both in biological and artificial motor control,
revolves around the question of movement primitives: what is a good set of
primitives, how can they be formalized, how can they interact with perceptual
input, how can they be adjusted autonomously, how can they be combined
task specifically, and what is the origin of primitives? In order to address the
first four of these questions, we suggest to resort to some of the most basic

6 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

ideas of dynamic systems theory. A dynamic system can generally be written
as a differential equation:

x = f(x,a,t) (4)

which is almost identical to Equation (1), except that the left-hand-side de-
notes a change-of-state, not a motor command. Such a kinematic formulation
is, however, quite suitable for motor control if we conceive of this dynamic
system as a kinematic planning policy, whose outputs are subsequently con-
verted to motor commands by an appropriate controller (Figure 3). Planning

Task Specific

Parameters Bgesi
Movement | _desired

— Primitive

T 0 Plant la—

Perceptual
Coupling

Fig. 3. Sketch of a control diagram with dynamic movement primitives.

in kinematic space is often more suitable for motor control since kinematic
plans generalize over a large part of the workspace — nonlinearities due to
gravity and inertial forces are taken care off by the controller at the motor ex-
ecution stage (cf. Figure 2). Kinematic plans can also be theoretically cleanly
superimposed to use multiple movement primitives to form more complex
behaviors, as indicated in Equation (3). It should be noted, however, that a
kinematic representation of movement primitives is not necessarily indepen-
dent of the dynamic properties of the limb. Proprioceptive feedback can be
used to on-line modify the attractor landscape of a DMP in the same way
as perceptual information [41-43]. Figure 3 indicates this property with the
“perceptual coupling” arrow — the biped locomotion example in Section 4.3
will clarify this issue.

The two most elementary behaviors of a nonlinear dynamic system are
point attractive and limit cycle behaviors, paralleled by discrete and rhyth-
mic movement in motor control. The idea of dynamic movement primitives
(DMP) is to exploit well-known simple formulations of such attractor equa-
tions to code the basic behavioral pattern (i.e., thythmic or discrete), and to
use statistical learning to adjust the attractor landscape of the DMP to the

Dynamic Movement Primitives 7

detailed needs of the task. As will be outlined in the next section, several
appealing properties, such as perception-action coupling and reusability of
the primitives, can be accomplished in this framework.

3 Dynamic Movement Primitives

3.1 Control with DMPs

We assume that the attractor landscape of a DMP represents the desired
kinematic state of a limb, i.e., desired positions, velocities, and accelerations
for each joint, or, alternatively, for each coordinate in task space. As shown
in Figure 3, kinematic variables are converted to motor commands through
an inverse dynamics model and stabilized by low gain feedback control. The
example of Figure 3 corresponds to a classical computed torque controller[44],
but more advanced learning and/or adaptive controllers can be employed[2].
Thus, the motor execution of DMPs can incorporate any standard control
technique that takes as input kinematic trajectory plans.

3.2 Planning with DMPs

In order to accommodate discrete and rhythmic movement plans, two kinds of
DMPs are needed: point attractive systems and limit-cycle systems. The key
question of DMPs is how to formalize nonlinear dynamic equations such that
they can be flexibly adjusted to represent arbitrarily complex motor behaviors
without the need for manual parameter tuning and the danger of instability
of the equations. We will sketch our approach in the example of a discrete
dynamic system for reaching movements — an analogous development holds
for rhythmic systems.

Assume we have a basic point attractive system, for instance, instantiated
by the second order dynamics

i =, (B9 -y)—2), T9=2+f (5)

where g is a known goal state, a, and (3, are time constants, 7 is a temporal
scaling factor (see below) and y, ¢ correspond to the desired position and
velocity generated by the equations, interpreted as a movement plan. For
appropriate parameter settings and f = 0, these equations form a globally
stable linear dynamic system with g as a unique point attractor. Could we find
a nonlinear function f in Equation (5) to change the rather trivial exponential
convergence of y to allow more complex trajectories on the way to the goal?
As such a change of Equation (5) enters the domain of nonlinear dynamics, an
arbitrary complexity of the resulting equations can be expected. To the best
of our knowledge, this problem has prevented research from employing generic
learning in nonlinear dynamic systems so far. However, the introduction of
an additional canonical dynamic system (z,v)

0 = y(Bu(9g —y) —v), TE=v (6)

8 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

and the nonlinear function f

N
Zwiwivi)
f(x7v7g) = iZINi, where 9; = exp (_hi (E _ Ci)) (7)
g
> i

i=1

alleviates this problem. Equation (6) is a second order dynamic system similar
to Equation (5), however, it is linear and not modulated by a nonlinear
function, and, thus, its monotonic global convergence to g can be guaranteed
with a proper choice of a,, and f,, e.g., such that Equation (6) is critically
damped. Assuming that all initial conditions of the state variables z,v,y,z
are zero, the quotient x/g € [0, 1] can serve as a phase variable to anchor
the Gaussian basis functions 1; (characterized by a center ¢; and bandwidth
hi), and v can act as a “gating term” in the nonlinear function (7) such that
the influence of this function vanishes at the end of the movement. Assuming
boundedness of the weights w; in Equation (7), it can be shown that the
combined system in Equations (5), (6), and (7) asymptotically converges to
the unique point attractor g.

It is not the particular instantiation in Equations (5), (6), and (7) what
is the most important idea of DMPs, but rather it is design principle what
matters. A DMP consists of two sets of differential equations: a canonical
system

% = h(x) (8)
and a transformation system

Ty = g(y, f) 9)

The canonical system needs to generate two quantities: a phase variable!
x, and a phase velocity v, i.e., x = [x y]T. The phase x is a substitute for
time and allows us anchoring our spatially localized basis functions (7). The
appealing property of using a phase variable instead of an explicit time rep-
resentation is that we can manipulate the time evolution of phase, e.g., by
additive coupling terms or phase resetting (cf. Section 4.3) — in contrast,
time cannot be manipulated easily. The phase velocity v is a multiplicative
term in the nonlinearity (7). If v is set to zero, the influence of the nonlinearity
vanishes in the transformation system, and the dynamics of the transforma-
tion system with f = 0 dominate its time evolution. In the design of a DMP,
we usually choose a structure for canonical and transformation systems that
are analytically easy to understand, such that the stability properties of the

! A phase variable, in our notation, monotonically increases (or decreases) its value
from movement start to end under unperturbed conditions. For periodic motion,
it may reset after one period to its initial value.

Dynamic Movement Primitives 9

DMP can be guaranteed. In the following, we give the equations for the
canonical and transformation systems for another formulation of a discrete
system, and also rhythmic systems.

A Discrete Acceleration DMP The canonical system and the function
approximator are identical to Equation (6) and Equation (7), respectively.
The transformation system is:

Ti=oz(B(r—y)—2) + f
TY=1z2 (10)
i = ay(g— 1)

This set of equations moved the nonlinear function into the differential equa-
tion of 2. Thus, 2, z, y can be interpreted as the desired acceleration, velocity,
and position, i.e., §, 9, y, generated by the DMP. In order to ensure a con-
tinuous acceleration profile for ¢, we had to introduce a simple first order
filter for the goal state in the 7 equation — if a, and 3, are chosen for critical
damping, ie., 5, = «a,/4, then oy = /2 is a suitable time constant for
the 7 equation for a three-fold repeated eigenvalue of A\j 23 = /2 of the
linear system in Equation (10) without f. The advantage of this “accelera-
tion” DMP is that it can easily be used in conjunction with an inverse model
controller that requires a continuous desired acceleration signal. As a disad-
vantage, the complexity of the transformation system had to be increased to
3' order.

A Phase Oscillator DMP By replacing the point attractor in the canonical
system with a limit cycle oscillator, a rthythmic DMP is obtained[29]. Among
the simplest limit cycle oscillators is a phase-amplitude representation:

i =a.(A—71), 7o =1 (11)

where r is the amplitude of the oscillator, A the desired amplitude, and ¢ its
phase. For this case, Equation (7) is modified to

N
D wiwlv
i=1

N
> i
i=1

and 1p; = exp (—hi(mod(¢, 2m) — ¢;)?)

flr, ¢) = 1

, where v = [rcos¢, rsing

The transformation system in Equations (5) remains the same, except that
we now identify the goal state g with a setpoint around which the oscillation
takes place. Thus, by means of A, 7, and g, we independently can control
amplitude, frequency, and setpoint of an oscillation.

10 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

A Limit-Cycle Oscillator DMP One slight variant on the rhythmic DMP
above is to employ an “energy-based” limit cycle oscillator as the canonical
system [45,46]

E-E
Fo v—k°x (13)
i = v, where E = (v? + k?2?)

TV = —

with nonlinear function

N
wl
;wzwz v .
f(z,v) = —F——, where v = [v \/FO} (14)
> i
1

and 1p; = exp (—h;(arctan2(v, z) — ¢;)?)

E) is interpreted as the desired energy level of the oscillator; it determines the
amplitude of the oscillation, while k& determines its frequency. The difference
between the two oscillator formulations comes to bear when perturbation
and coupling effects need to be considered. As will be demonstrated in a
later section, the phase oscillator formulation is particularly useful for mod-
eling effects like phase resetting and phase coupling, while the energy-based
oscillator is more useful when effects like “synaptic coupling” need to be
incorporated[47].

3.3 Invariance Properties of DMPs

In all the different DMP variants above, the weights w; determine the partic-
ular shape of the trajectories realized by the DMP, the parameter 7 the speed
of a movement, and some other parameters like g, Fy, or A the amplitude of
the movement. In order to exploit the property that DMPs code kinematic
control policies, i.e., the plans can theoretically be re-used in many parts of
the workspace, it is desirable that DMPs retain their qualitative behavior
if translated and if scaled in space or time. From a dynamic systems point
of view, we wish that the attractor landscape of a DMP does not change
qualitatively after scaling, a topic addressed in the framework of “topologi-
cal equivalence” [48]. Formally, if dynamic system one obeys x = f(x), and

system two yields y = g(y), then the existence of an orientation preserv-

—1
ing homeomorphism h: [x,)'(}L[y,y] and [x, X]L[y, y] proves topological

equivalence. It can easily be verified, that if a new DMP is created by mul-
tiplying 7, g, Fp, or A in any of the DMPs above by a factor ¢, a simple
multiplication of all state variables and change-of-state variables by a fac-
tor ¢ or y/c constitutes the required homeomorphism to proof topological
equivalence.

Dynamic Movement Primitives 11

Thus, if designed correctly, DMPs can be re-used in new situation similar
to the one for which they were built. For instance, a tennis forehand DMP
could be used to create a small amplitude swing, or a large amplitude swing,
without changing the basic swing pattern that the tennis coach so carefully
taught to the student.

3.4 Imitation Learning with DMPs

An important issue is how to learn the weights w; in the nonlinear function
f that characterizes the spatiotemporal path of a DMP. Given that f is a
normalized basis function representation with linear parameterization[49], a
variety of learning algorithms exist to find w;. Let us assume we are given a
sample trajectory Yaemo(t), Ydemo(t), Udemo(t) with duration T, e.g., as typical
in imitation learning[9]. Based on this information, a supervised learning
problem results with the following target for f:

e For the transformation system in Equation (5), using ¢ = ydemo(T):

ftarget = TYdemo — Zdemo Where (15)
TZdemo = Oz (ﬁz (g - ydemo) - Zdemo)

e For the transformation system in Equation (10)

ftarget = T:ijdemo — Oy (ﬁz (T - ydemo) - ydemo) (16)

In order to obtain a matching input for fisrget, the canonical system needs
to be integrated. For this purpose, in Equation (6), the initial state of the
canonical system is set to v = 0, & = Ydemo(0) before integration. An analo-
gous procedure is performed for the rhythmic DMPs. The time constant 7 is
chosen such that the DMP with f = 0 achieves 95% convergence at t = T.
With this procedure, a clean supervised learning problem is obtained over
the time course of the movement to be approximated with training samples
(v, ftarget) (cf. Equations (7),(12),(14)).

For solving the function approximation problem, we chose a nonparamet-
ric regression technique from locally weighted learning (LWPR)[50] as it al-
lows us to determine the necessary number of basis functions IV, their centers
¢;, and bandwidth h; automatically. In essence, for every basis function v,
LWPR performs a locally weighted regression of the training data to obtain
an approximation of the tangent of the function to be approximated within
the scope of each basis function. Predictions for a query point are generated
by a 1;-weighted average of the predictions of all local models. Given that
the parameters w; learned by LWPR are independent of the number of basis
functions, they can be used robustly for categorization of DMPs (see Section
3.8).

In summary, by anchoring a linear learning system with nonlinear basis
functions in the phase space of a canonical dynamic system with guaranteed

12 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

attractor properties, we are able to learn complex attractor landscapes of non-
linear differential equations without endangering the asymptotic convergence
to the goal state. Both discrete and rhythmic movements can thus be coded
in the DMPs with almost arbitrarily complex smooth trajectory profiles. This
strategy opens a large range of possibilities to create movement primitives,
e.g., for reaching, grasping, object manipulations, and locomotion.

3.5 Reinforcement Learning of DMPs

While imitation learning provides an excellent means to start a movement
skill at a high performance level, many movement tasks require trial-and-error
refinement until a satisfying skill level is accomplished. From the viewpoint
of DMPs, we need non-supervised learning methods to further improve the
weights w={w;}, guided by a general reward or optimization criterion.

Optimization theory, dynamic programming and reinforcement learning
[5,32,51] offer a general set of tools for learning w from trial and error, also
called “roll-outs” in reinforcement learning. We assume that an arbitrary
optimization criterion J governs our learning process, such that it is not
possible to obtain analytical gradients dJ/dw. Thus, the gradient needs to
be estimated from empirical data, i.e., by trying a certain instantiation of
the parameters and monitoring its performance. Levenberg-Marquardt and
Gauss-Newton algorithms are a possible choice for this task[51] — however,
both algorithm often dare large jumps in parameter space under the assump-
tion that an aggressive exploration of parameters is permissible. For motor
learning on a physical robot, we require a safer and smoother learning system,
at the cost of slightly slower convergence. For this purpose, we developed a
novel reinforcement learning algorithm, the Natural-Actor Critic (NAC)[52].
The NAC is a stochastic gradient method, i.e., it injects noise in the con-
trol policy in order to provided the necessary exploration for learning. We
will illustrate the NAC algorithm in the context of the acceleration DMP in
Section 3.2.

The DMP in Equation (10) can be interpreted as creating an acceleration
command §j = # in the top equation of (10). In the NAC, this acceleration
command is treated as the mean of a Gaussian control policy

il v.0) = o (~ 50 (- 1)) (17)

with variance o2. Given a reward r(j,x,v,y, z) at every time step of the
movement, the goal of learning is to optimize the expected accumulated re-
ward

T
J(w) = E{Zn} (18)

t=0
where the expectation is take with respect to all trajectories starting at the
same start state and following the stochastic policy above. As developed in

Dynamic Movement Primitives 13

detail in [52], the natural gradient of d.J/dw; can be estimated by a linear
regression procedure:

Define for one roll-outr :

T
R, = E ¢, and
t=0

¢T — i |:810g77(yt|,$t,’Ut,yt,Zt)/aW]

2 1 (19)
After multiple roll-outs, computed.J/dw :

o1 Ry
o= || R= ||, [8‘]/0‘1‘”} = (673) ' $TR

where c is the regression parameter corresponding to the constant offset in the
regression. The natural gradient is a special version of the regular gradient
that takes into account the Riemannian structure of the space in which the
optimization surface lies[53]; as demonstrated in [?], it allows a much more
efficient form of gradient descent. The above algorithm can also be formu-
lated as a recursive estimation method using recursive least squares [54], and
the variance o2 of the stochastic policy can be included in the parameters
to be optimized. By updating w with gradient ascent (or descent) accord-
ing to the natural gradient estimate, fast convergence to a locally optimal
parameterization can be accomplished.

3.6 Multiple Degree-of-Freedom DMPs

So far, our treatment of DMPs focused on single degree-of-freedom (DOF)
systems. An extension to multiple DOF's is rather straightforward. The sim-
plest form employs a separate DMP for every DOF. Alternatively, all DMPs
could share the same canonical system, but have separate transformation sys-
tems, as realized in [46]. In this case, every DOF learns its own function f.
By sharing the same canonical system, very complex phase relationships be-
tween individual DOFs can be realized and stabilized, for instance, as needed
for biped locomotion in the examples in Section 4.

3.7 Superposition of DMPs

Given that DMPs create kinematic control polices, a superposition of DMPs
to generate behaviors that are more complex is possible. For instance, a
discrete DMP could be employed to shift the setpoint of a rhythmic DMP,
thus generating a point-to-point movement with a superimposed periodic
pattern. For example, with this strategy is possible to bounce a ball on a
racket by producing an oscillatory up-and-down movement in joint space of
the arm, and use the discrete system to make sure the oscillatory movement

14 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

remains under the ball such that the task can be accomplished[41,55]. Other
forms of superposition are conceivable, and future work will evaluate the most
promising strategies.

3.8 Movement Recognition with DMPs

The invariance properties described in Section 3.3 render the parameters w
of a DMP insenstive towards movement translation and spatial and temporal
scaling. Thus, the w vector can serve as a classifier for DMPs, e.g., by using
nearest neighbor classification or more advanced classification techniques[49].
In [30], we demonstrated how DMPs can be used for character recognition of
the Palm Pilot graffiti alphabet.

4 Evaluations

The following sections give some examples of the abilities of DMPs in the
context of humanoid robotics. We implemented our DMP system on a 30
DOF Sarcos Humanoid robot (Figure 1). Desired position, velocity, and ac-
celeration information was derived from the states of the DMPs to realize
a compute-torque controller (Figure 3). All necessary computations run in
real-time at 420Hz on a multiple processor VME bus operated by VxWorks.

4.1 Imitation Learning

In [30], we demonstrated how a complex tennis forehand and tennis backhand
swing can be learned from a human teacher, whose movements were captured
at the joint level with an exoskeleton. Figure 4 illustrates imitation learning
for a rhythmic trajectory using the phase oscillator DMP from Section 3.2.
The images in the top of Figure 4 show four frames of the motion capture
of a figure-8 pattern and its repetition on the humanoid robot after super-
vised learning of the trajectory as described in Section 3.4. The bottom-left
plots demonstrate the motion captured and fitted trajectory of a bimanual
drumming pattern, using 6 DOFs per arm. All DMPs referred to the same
canonical system (cf. Section 3.6). Note that very complex phase relationships
between the individual DOF's can be realized. For one joint angle, the right
elbow joint (R-EB), the bottom-right plot exemplifies the effect of various
changes of parameter settings of the DMP (cf. figure caption in Figure 4).
Here it is noteworthy how quickly the pattern converges to the new limit cycle
attractor, and that parameter changes do not change the movement pattern
qualitatively, as predicted from the analysis of Section 3.3. The nonlinear
function of each DMP employed 15 basis functions.

Dynamic Movement Primitives 15

s

o 1 2 3 6 9 10

5
Time [s]

Fig. 4. Top: Humanoid robot learning a figure-8 movement from a human demon-
stration. Left: Recorded drumming movement performed with both arms (6 DOFs
per arm). The dotted lines and continuous lines correspond to one period of the
demonstrated and learned trajectories, respectively — due to rather precise over-
lap, they are hardly distinguishable. Right: Modification of the learned rhythmic
pattern (flexion/extension of the right elbow, R_EB). A: trajectory learned by the
rhythmic DMP, B: temporary modification with A «<2A, C: temporary modifica-
tion with 7 «7/2, D: temporary modification with g < g+1 (dotted line). Modified
parameters were applied between t=3s and t="Ts.

4.2 Reinforcement Learning

In a preliminary application of the reinforcement learning method of Section
3.5, we optimized the weights of the acceleration DMP of Section 3.2 to create
smooth joint-level trajectories in the spirit of 5* order polynomials [56,57].
The reward per trajectory was

T

R = 1000 (y(T) = 9)* + §*(1) + Y _ i (1) (20)

Weights of each DMP were initialized to zero. Each movement started at
y = 0 and moved within 500ms to g = 1. Figure 5 illustrates the convergence
of the Natural Actor Critic algorithm in comparison to a non-natural gradient
method, Episodic Reinforce[58]. The NAC algorithm converges smoothly with
about one order of magnitude faster performance than Episodic Reinforce.
Good smooth bell-shaped velocity profiles of the DMP are reached after about

16 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

1400; (a) Performance comparison

1200¢
@
= 1000 Episodic REINFORCE
é 800t
B
§ 600}
&
@ 400} WWWWW

200t L P s,
Episodic Natural Actor-Critic

0 L y
0 200 400
Number of Episodes

600 800 1000

Fig. 5. Convergence of Natural Actor Critic reinforcement learning for learning the
weights of a DMP.

150-200 trials, which is comparable to human learning in related tasks[59].
This initial evaluation demonstrates the efficiency of the NAC algorithm for
optimizing DMPs, although more thorough evalutions are needed for various
reward criteria and also multi-DOF tasks.

4.3 Learning Resonance Tuning in Biped Locomotion

As a last evaluation of DMPs; we applied the phase oscillator DMP to sim-
ulated biped locomotion[60] y. Figure 6 shows the setup of the planar biped.
Motion capture date from human locomotion was employed to learn an ini-
tial trajectory pattern, which, after some modest tuning of the speed and
amplitude parameters of the DMP, achieved stable locomotion. Consider the
following update law for the phase and frequency of the canonical system of
the DMP at the moment of heel-strike:

gz;) ="+ 5(t - theelfstrike)(ZZZ?istrike - ¢)
Gt = om + K (wh, @")

measured

(21)

: : : : robot
where ¢ is the Dirac delta function, nis the number of steps, and ¢}927" ., ..1.c

is the phase of the mechanical oscillator (robot) at heel strike defined as

pobot ike = 0 at the heel strike of the leg with the corresponding oscilla-

tor, and ¢Zoelé7:trike = 7 at the heel strike of the other leg. w) is the
measured frequency of locomotion defined by w? .. <.eqa = 7/Tn, where T}, is

the time for one step of locomotion (half period with respect to the oscilla-
tor). This equation introduces phase resetting of the DMP at heel-strike as

Dynamic Movement Primitives 17

state 6,0
CPGs
Dynamical primitives
(index : i=1~4) L_HIP
oscillator U 2] Torque R_HIP
des L HIP
Ty == = 1iy) - command
74 =1 (0,=1/7,) o edes L KNEE|:> |:>
o Kp(0,,-0)-K,0 e
i U=RpUps—0)—Rp
output with local models edeszleP de
w4 =a (B0 =)= 2) R_KNEE
. PN Oues R KkNEE
T =z 4 - -
ns
LV Desired joint trajectories Robot

T Phase reset and update of @ for frequency adaptation

Foot contact information

Fig. 6. Four rhythmic DMPs drive the four actuated joints of a planar biped sim-
ulation, consisting of two hip and two knee joints. A PD controller is used to track
the trajectories generated by the DMPs.

long as the natural frequency of the robot does not correspond to the natural
frequency of the canonical system of the DMP; more details can be found
n [60]. Figure 7 depicts the time course of adaptation of the movement fre-
quency of the DMPs for the right leg DOFs due to the update law above.
The frequency gradually increases until it reaches approximately resonance
frequency of the simulated robot legs. This simulation provides thus a nice ex-
ample how imitation learning can initially be used to start a movement skill,
and self-improvement can optimize the pattern for the particular inertial and
geometric structure of the robot.

5 Conclusion

This paper described research towards generating flexible movement primi-
tives out of nonlinear dynamic attractor systems. We focused on motivating
the design principle of appropriate dynamic systems such that discrete and
rhythmic movements could be learned for high-dimensional movement sys-
tems. In particular, we emphasized methods of imitation learning and rein-
forcement learning for acquiring motor skills with movement primitives. We
also described some implementations of our methods of dynamic movement
primitives on a complex anthropomorphic robot, demonstrating imitation
learning of complex rhythmic movement, re-using of learn skills in related
situations, and resonance tuning for biped locomotion. We believe that the
framework of dynamic movement primitives has a tremendous potential for
understanding autonomous generation of complex motor behaviors in humans

18 S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

— R_HIP
— — R_HIP des

Time (sec)

Fig. 7. Time course of trajectories of right leg DOFs using the phase resetting
adaptation law. The movement frequency slow decreases until resonance tuning is
accomplished.

and humanoids. Our future work will pursue a combination of robotic, theo-
retical, and biological research addressing how a library of motor primitives
can be created, maintained, adapted to new situations, and sequenced and
superimposed for the creation of complex perceptuomotor behaviors.

6 Acknowledgments

This work was made possible by awards #9710312/#0010312 and #0082995
of the National Science Foundation, award AC#98-516 by NASA, an AFOSR
grant on Intelligent Control, the ERATO Kawato Dynamic Brain Project
funded by the Japanese Science and Technology Agency, and the ATR Human
Information Processing Research Laboratories.

References

1. P. Menzel and F. D’Alusio (2000) Robosapiens: Evolution of a new species,
Cambridge, MA: MIT Press

2. J. Nakanishi, J. A. Farrell, and S. Schaal (submitted) Composite adaptive con-
trol with locally weighted statistcal learning, International Journal of Robotics
Research

3. S. M. LaValle (2003) Planning algorithms

4. J.-C. Latombe (1991) Robot motion planning, Boston: Kluwer Academic Pub-
lishers

5. R. S. Sutton and A. G. Barto (1998) Reinforcement learning : An introduction,
Cambridge: MIT Press

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Dynamic Movement Primitives 19

S. Thrun (2000), Probabilistic algorithms in robotics, AI Magazine, vol. 21, pp.
93-109

O. Khatib, K. Yokio, O. Brock, K. Chang, and A. Casal, (2001) Robots in
human environments, Archives of Control Sciences, Special Issue on Granular
Computing, vol. 11, pp. 123-128

C. G. Atkeson, J. Hale, M. Kawato, S. Kotosaka, F. Pollick, M. Riley, S. Schaal,
S. Shibata, G. Tevatia, and A. Ude (2000) Using Humanoid Robots to Study
Human Behaviour, IEEE Intelligent Systems, vol. 15, pp. 46-56

S. Schaal (1999) Is imitation learning the route to humanoid robots?, Trends
in Cognitive Sciences, vol. 3, pp. 233-242

M. Mataric (2000) Getting humanoids to move and imitate, IEEE Intelligent
Systems, vol. 15, pp.18-24

K. Dautenhahn and C. L. Nehaniv (2002) Imitation in animals and artifacts,
Cambridge, MA: MIT Press

S. Schaal, A. Ijspeert, and A. Billard (2003) Computational approaches to
motor learning by imitation, Philosophical Transaction of the Royal Society of
London: Series B, Biological Sciences, vol. 358, pp. 537-547

J. Rittscher, A. Blake, A. Hoogs, and G. Stein (2003) Mathematical modelling
of animate and intentional motion, Philos Trans R Soc Lond B Biol Sci, vol.
358, pp. 475-90

T. Shibata, S. Vijayakumar, J. Conradt, and S. Schaal (2001) Biomimetic ocu-
lomotor control, Adaptive Behavior, vol. 9, pp. 189-207

L. Itti and C. Koch (2001) Computational modelling of visual attention, Nat
Rev Neurosci, vol. 2, pp. 194-203

J. Triesch and C. von der Malsburg (2001) Democratic integration: self-
organized integration of adaptive cues, Neural Comput, vol. 13, pp. 2049-74
S. Hirose (2002) Two decades of locomotion study: Retrospection and prospect
for the future, Journal of the Robotics Society of Japan, vol. 20, pp. 1-6

J. Lee, J. Chai, A. Reitsma, J. K. Hodgins, and N. S. Pollard (2002) Interactive
control of avatars animated with human motion data, presented at Proceedings
of SIGGRAPH

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek (1999) Sequential com-
position of dynamically dexterous robot behaviors, International Journal of
Robotics Research, vol. 18, pp. 534-555

T. Inamura, I. Toshima, and Y. Nakamura (2002) Acquisition and embodiment
of motion elements in closed mimesis loop, presented at International Confer-
ence on Robotics and Automation (ICRA2002), Washinton, May 11-15

M. A. Arbib (1981) Perceptual structures and distributed motor control, in
Handbook of Physiology, Section 2: The Nervous System Vol. II, Motor Control,
Part 1, V. B. Brooks, Ed.: Bethesda, MD: American Physiological Society, 1981,
pp. 1449-1480

P. Viviani (1986) Do units of motor action really exist?, in Experimental Brain
Research Series 15. Berlin: Springer, pp. 828-845.

M. Mataric (1988) Behavior-based robotics as a tool for synthesis of artificial
behavior and analysis of natural behavior, Trends in Cognitive Sciences, vol. 2,
pp- 82-86

D. Sternad and D. Schaal (1999) Segmentation of endpoint trajectories does not
imply segmented control, Experimental Brain Research, vol. 124, pp. 118-136
H. Miyamoto and M. Kawato (1998) A tennis serve and upswing learning robot
based on bi-directional theory, Neural Networks, vol. 11, pp. 1331-1344

20

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44

S.SCHAAL, J.PETERS, J. NAKANISHI and A.IJSPEERT

S. Schaal (2002) Learning robot control, in The handbook of brain theory and
neural networks, 2nd Edition, M. A. Arbib, Ed., 2 ed. Cambridge, MA: MIT
Press, pp. 983-987

S. Schaal Arm and hand movement control, in The handbook of brain theory
and neural networks, 2nd Edition, M. A. Arbib, Ed., 2 ed. Cambridge, MA:
MIT Press, 2002, pp. 110-113.

A. Tjspeert, J. Nakanishi, and S. Schaal, Trajectory formation for imitation with
nonlinear dynamical systems, presented at IEEE International Conference on
Intelligent Robots and Systems, 2001.

A. Tjspeert, J. Nakanishi, and S. Schaal, Learning attractor landscapes for learn-
ing motor primitives, in Advances in Neural Information Processing Systems
15, S. Becker, S. Thrun, and K. Obermayer, Eds.: Cambridge, MA: MIT Press,
2003.

J. A. Ijspeert, J. Nakanishi, and S. Schaal, Movement imitation with nonlinear
dynamical systems in humanoid robots, presented at International Conference
on Robotics and Automation, Washinton, May 11-15 2002.

R. Bellman, Dynamic programming. Princeton, N.J.: Princeton University
Press, 1957.

P. Dyer and S. R. McReynolds, The computation and theory of optimal control.
New York: Academic Press, 1970.

G. Tesauro, Temporal difference learning of backgammon strategy, in Proceed-
ings of the Ninth International Workshop Machine, D. Sleeman and P. Edwards,
Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 9-18.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic Programming. Bellmont,
MA: Athena Scientific, 1996.

J. M. Hollerbach, Dynamic scaling of manipulator trajectories, Transactions of
the ASME, vol. 106, pp. 139-156, 1984.

S. Kawamura and N. Fukao, Interpolation for input torque patterns obtained
through learning control, presented at International Conference on Automation,
Robotics and Computer Vision, Singapore, Nov., 1994.

K. Yamane and Y. Nakamura, Dynamics filter — conopet and implementation
of on-line motion generator for human figures, presented at International Con-
ference on Robotics and Automation, San Francisco, April 2000.

R. S. Sutton, D. Precup, and S. Singh, Between MDPs and semi-MDPs: a
framework for temporal abstraction in reinforcement learning, Artificial Intel-
ligence, vol. 112, pp. 181-211, 1999.

R. A. Brooks, A robust layered control system for a mobile robot, IEEE Journal
of Robotics and Automation, vol. 2, pp. 14-23, 1986.

W. Lohmiller and J. J. E. Slotine, On contraction analysis for nonlinear sys-
tems, Automatica, vol. 6, 1998.

A. A. Rizzi and D. E. Koditschek, Further progress in robot juggling: Solv-
able mirror laws, presented at IEEE International Conference on Robotics and
Automation, San Diego, CA, 1994.

S. Schaal and D. Sternad, Programmable pattern generators, presented at 3rd
International Conference on Computational Intelligence in Neuroscience, Re-
search Triangle Park, NC, 1998.

M. Williamson, Neural control of rhythmic arm movements, Neural Networks,
vol. 11, pp. 1379-1394, 1998.

J. J. Craig, Introduction to robotics. Reading, MA: Addison-Wesley, 1986.

45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Dynamic Movement Primitives 21

. J. Nakanishi, T. Fukuda, and D. E. Koditschek, A brachiating robot controller,
IEEE Transactions on Robotics and Automation, vol. 16, pp. 109-123, 2000.
J. A. Ijspeert, J. Nakanishi, and S. Schaal, Learning rhythmic movements
by demonstration using nonlinear oscillators, presented at IEEE International
Conference on Intelligent Robots and Systems, Lausanne, Sept.30-Oct.4, 2002.
D. Sternad, E. L. Amazeen, and M. T. Turvey, Diffusive, synaptic, and syner-
getic coupling: An evaluation through inphase and antiphase rhythmic move-
ments, Journal of Motor Behavior, vol. 28, pp. 255-269, 1996.

E. A. Jackson, Perspectives of nonlinear dynamics, Vol.1 New York: Cambridge
University Press, 1989.

C. M. Bishop, Neural networks for pattern recognition. New York: Oxford Uni-
versity Press, 1995.

S. Vijayakumar and S. Schaal, Locally weighted projection regression: An O(n)
algorithm for incremental real time learning in high dimensional spaces, pre-
sented at Proceedings of the Seventeenth International Conference on Machine
Learning, Stanford, CA, 2000.

W. P. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
recipes in C — The art of scientific computing. Cambridge, MA: Press Syndia-
cate University of Cambridge, 1989.

J. Peters, S. Vijayakumar, and S. Schaal, Reinforcement learning for humanoid
robotics, presented at Humanoids2003, Third IEEE-RAS International Confer-
ence on Humanoid Robots, Karlsruhe, Germany, Sept.29-30, 2003.

S. Amari, Natural gradient learning for over- and under-complete bases In ICA,
Neural Comput, vol. 11, pp. 1875-83, 1999.

L. Ljung and T. Sderstrm, Theory and practice of recursive identification: Cam-
bridge MIT Press, 1986.

S. Schaal, D. Sternad, and C. G. Atkeson, One-handed juggling: A dynamical
approach to a rhythmic movement task, Journal of Motor Behavior, vol. 28,
pp. 165-183, 1996.

L. Sciavicco and B. Siciliano, Modeling and control of robot manipulators. New
York: MacGraw-Hill, 1996.

R. B. Stein, M. N. Ogusztreli, and C. Capaday, What is optimized in muscular
movements?, in Human Muscle Power, N. L. Jones, N. McCartney, and A.
J. McComas, Eds. Champaign, Illinois: Human Kinetics Publisher, 1986, pp.
131-150.

R. J. Williams, Simple statistical gradient-following algorithms for connection-
ist reinforcement learning, Machine Learning, vol. 8, pp. 229-256, 1992.

R. Shadmehr and F. A. Mussa-Ivaldi, Adaptive representation of dynamics
during learning of a motor task, Journal of Neuroscience, vol. 14, pp. 3208-
3224, 1994.

J. Nakanishi, J. Morimoto, G. Endo, S. Schaal, and M. Kawato, Learning from
demonstration and adaptation of biped locomotion with dynamical movement
primitives, presented at IEEE International Conference on Intelligent Robots
and Systems, Las Vegas, NV, Oct. 27-31, 2003.

